
www.manaraa.com

Automatic Synthesis of Data Storage and Control Structures
for FPGA-based Computing Engines

Pedro Diniz and Joonseok Park
Information Sciences Institute / University of Southern California

4676 Admiralty Way, Suite 1001
Marina del Rey, California, 90292-6695

{pedro,joonseok}@isi.edu

Funded by the Defense Advanced Research Project
Agency under contract number F30602-98-2-0113

Abstract

Mapping computations written in high-level programming
languages to FPGA-based computing engines requires
programmers to generate the datapath responsible for the core of
the computation as well as control structure to generate the
appropriate control signals to orchestrate its execution. This paper
addresses the issue of automatic generation of data storage and
control structures for FPGA-based reconfigurable computing
engines using existing compiler data dependence analysis
techniques. We describe a set of parameterizable data storage and
control structures used as the target of our prototype compiler. We
present a compiler analysis algorithm to derive the parameters of
the data storage structures to minimize the required memory
bandwidth of the implementation. We also describe a complete
compilation scheme for mapping loops that manipulate multi-
dimensional array variables to hardware. We present preliminary
simulation results for complete designs generated manually using
the results of the compiler analysis. These preliminary results show
that is possible to successfully integrate compiler data dependence
analysis with existing commercial synthesis tools.

Keywords: FPGA-based reconfigurable computing architectures,
compilation, program analysis, data queues.

1. Introduction

The extreme flexibility of Field-Programmable-Gate-Arrays
(FPGAs) coupled with the widespread acceptance of hardware
description languages such as VHDL or Verilog have made FPGAs
the medium of choice for fast prototyping of hardware
implementations and a popular vehicle for the realization of custom
computing machines. Typical architectures consists of a varying
number of computing FPGAs attached to their local memories.
These FPGAs are connected via a predefined topology and their
execution supported either by an extra controller unit or by a
general purpose processor [1,2,13].

Programming these reconfigurable systems however, is a elaborate
and lengthy process. The programmer must master all of the details
of the hardware architecture, partition the computation and data so
that it can allocate functional units to each of the computing
FPGAs. In this process the programmer must partition the code
between the code that orchestrates the whole execution (typically a
C program executing on a general purpose processor) and the code

that is to be mapped onto each FPGA. For this code, the
programmer must specify the datapath that will carry out the
computation using an hardware description language. In addition
the programmer must tie the datapath with its controller, typically a
finite-state-machine (FSM). This FSM ensures the data is stored
and retrieved to and from the FPGA ports on a specific clock cycle.
If a pipelined implementation is sought the programmer must also
take responsibility for the correct synchronization between pipeline
stages and for handling the input/output data at the correct rate.

For architectures with multiple FPGAs the programmer must
ensure the rates of each FPGA match the rate of the respective
controllers. If the data for each FPGA is fetched from memory by a
external controller (typically a general purpose processor) the
programmer must generate a correct control programmer for all of
the FPGA executing simultaneously. This control program
(occasionally implemented by a designated FPGA) in effect mimics
the execution of concurrent threads, on each FPGA and must ensure
that each data consumed and generated by each FPGA is done at
the correct clock cycle. When the speed of the devices or the
datapath implementations on the FPGA changes the programmer
must revise and change the controller and/or the program executing
on the host.

Of particular interest to this research are digital image processing
applications. These applications tend to concentrate the
computation in tightly nested loops that manipulate dense multi-
dimensional array data structures expressed in languages such as
MatLab or C. The rapid translation of these computations to FPGA
posses several problems. First, to our knowledge no commercially
available synthesis tool can translate multi-dimensional array
access patterns to hardware that performs the fetching of
consecutive array index accesses. The option of array linearization
is not desirable in many cases as it complicates high-level compiler
analysis and produces code that is not only hard to analyze but also
difficult to maintain. Second, the lack of advance data dependence
analysis precludes the application of analysis techniques for the
automatic derivation of efficient storage models for the data
manipulated in tight loop nests. Many efficient implementations of
these computations done by programmers pervasively use data
queues to significantly reduce the required number of memory
accesses in effect caching data in internal registers. This experience
suggests these data storage structures are very important in the
efficient implementation of these classes of computations.

In this paper we address the issue of control and data storage
structures for FPGA-based reconfigurable computing engines. We
begin by describing a set of parameterizable control blocks. Like

www.manaraa.com

recent approaches to module generators (e.g., [4,5]) the control
blocks presented in this paper can be combined in aggregate control
structures. We describe address generators with auto-increment
capabilities, buffered input and output queues and pipelining
control structures. In the context of FPGAs where minimizing the
number of reconfiguration is still an important metric, the structure
proposed in this paper can be used by multiple datapath and/or
reused across different FPGA configurations.

We also describe the application of data dependence analysis to the
automatic generation of data queues for computations that
manipulate multi-dimensional array using affine index access
functions. The goal of this analysis is to explore a wide range of
program transformations with the goal of reducing the number of
required memory accesses, and therefore reducing the required
memory bandwidth for a particular implementation. We developed
a compilation and synthesis strategy using a set of high-level
parameterizable building blocks that allows a compiler to
automatically generate complete designs for boards consisting of
multiple computing FPGAs without host processor direct
intervention. We have implemented and tested the algorithms and
the code generation (in synthesizable VHDL specifications) for a
set of kernel digital image processing applications. We provide
experimental simulation results for the automatically generated set
of designs for this set of computations.

This paper makes the following contributions:

1. It presents a set of parameterizable control and data storage
structures for the mapping of computations consisting of loops
that manipulate multi-dimensional arrays with affine access
functions onto FPGA-based systems.

2. It presents an analysis algorithm for the automatic derivation
of these control structures. Of particular significance if the
automatic derivation of the data queues (number, length and
stride of the corresponding array accesses).

3. It presents a simple algorithm that evaluates several possible
designs that exploit data queues. This algorithm uses the data
access patterns in the loop nest to choose a design with the
lowest number of required memory accesses or bandwidth.

4. It describes a compilation synthesis scheme for FPGA-based
computing engines for computations expresses as loop nests
that manipulate array variables with affine index functions.

5. It presents preliminary experimental simulation results for the
automatic translation of a set of computation using our compi-
lation/synthesis strategy and our set of defined control struc-
tures using commercial synthesis tools. These preliminary
results indicate these control structures can serve as the basis
of a successful compilation and synthesis flow.

We believe the control and data storage structures described here
can play an important role as part of a library of synthesizable
modules, but as well as used to facilitate the tasks of a compiler
tools in the mapping of high-level programming constructs to
hardware. The fact that programmers often use similar data and
control structures in their hand crafted designs is clear evidence of
their important in the effective mapping of digital image processing
computation to FPGA-based implementations.

The rest of this paper is structured as follows. We next introduce a
set of parameterized modules and the proposed compilation target
architecture via an example. Next we describe the various control
structures and their rationale. Section 4 describes our compiler
analysis algorithms for the automatic derivation of data queues.1

Section 5 presents preliminary simulation experimental results for a
set of digital image processing applications. In section 6 we survey
related work and conclude in section 7.

2. Example

We now illustrate the use of basic data storage and control
structures for the automatic mapping of an example computation
onto an FPGA-based computing engine. The computation is written
in C as depicted in Figure 1. It consists of a single loop nest and
computes the Sobel edge detection algorithm over an 8 bit gray-
scale image. The image is stored in a 2-dimensionalimg array of
characters. The output is stored in the 2-dimensionaledge array.

 char img[SIZE][SIZE], edge [SIZE][SIZE];
 int uh1, uh2, threshold;
 for (i=0; i < SIZE - 4; i++) {
 for (j=0; j < SIZE - 4; j++) {
 uh1= (((- img[i][j]) + (- (2 * img[i+1][j])) + (- img[i+2][j]))
 + ((img[i][j-2]) + (2 * img[i+1][j-2]) + (img[i+2][j-2])));
 uh2 = (((-img[i][j]) + (img[i+2][j]))
 + (-(2 * img[i][j-1]))+(2*img[i+2][j-1])
 + ((- img[i][j-2]) + (img[i][j-2])));
 if ((abs(uh1) + abs(uh2)) < threshold)
 edge[i][j]=”0xFF”;
 else
 edge[i][j]=”0x00;
 }
 }

Figure 1. Sobel Edge detection computation example.

The computation generates for each output image pixel either a
zero value “0x00” or a 1 value “0xff”. The computation uses a
vertical and an horizontal gradient operator defined by a 3-by-3
pixel window around the pixel being evaluated to decide if the
corresponding output pixel value should be 1 or 0.

A naive implementation of this computation onto an FPGA (or a set
of FPGA over which we have partitioned the input data and
computation) could use the datapath core presented in Figure 2.
This datapath core follows a direct RTL translation of the set of
statements in the loop body. Missing from this design are the
control structures responsible for fetching and storing the data as
well as implementing pipelining execution scheme. Figure 3 below
illustrates the conceptual layout of the target architecture design our
compiler uses to generate complete designs.

This architecture has several auxiliary control structures to the
execution of the core datapath. Because our compiler targets
pipelined execution techniques the datapath architecture include a
simple pipeline control unit. This unit keeps track of which

1 In reality these data storage structures are delay lines where the computation can
directly access any element of the line at any time. By lack of a more commonly
accepted term, such as tap delay line, we use data queue.

www.manaraa.com

iterations of the loop are currently in execution and generates the
appropriate control signal (mainly for data fetching and storing)
corresponding to the prologue and epilogue of the pipeline. The
address generation unit is a programmable array address generation
unit the compiler can synthesize to automatically increment/
decrement the address of references corresponding to array
references in the source program. This unit is controlled by a I/O
queue controller to steer the input/output data into the appropriate
core datapath port or if that is the case to the input/output data
queue (see Figure 3 below).

Figure 2. Naive code datapath implementation for the Sobel
edge detection computation.

Figure 3. Target design architecture.

This example also makes apparent the advantage of exploiting the
fact that consecutive iterations of the inner loop use data that
previous iteration have fetched. For example 4, out of the 8 inputs
values from theimg array required for every iteration can be reuse
from the values used in the previous iteration as every computation
uses the pixel values in a “3-by-3” pixel window. The set of
addresses generated by each array reference in the source program
is very simple to define statically by the compiler - it is a simple
affine index access expression. This suggests the use of data input
queues to retain the values of the pixel across iteration. This
strategy significantly reduces the number of memory accesses per
iteration. Figure 4 presents the revised version of the datapath core
for the Sobel computation example using data queues.

The auxiliary control structure required to support the execution of
this revised datapath do not differ from the control structure used in
the previous datapath. Less number of streams are required and
fewer clock cycles per iteration. Because both our pipeline control
units and address generation and I/O buffer controller are
parameterizable and reprogrammable, the compiler needs to
generate very little modifications to fully support the execution of
both designs.

Figure 4. Sobel core datapath with input queues.

The Sobel computation example illustrates the basic hardware
abstractions and compiler analysis techniques our approach
captures. The computation is expressed using a tight loop nest with
multi-dimensional array variables. This feature, pervasive in digital
image processing kernels, allows us to use existing compiler data
dependence analysis techniques to automatically extract the number
of input and output data reference streams and analyze the reuse
patterns of data across loop iterations. The compiler uses the
memory access pattern of the array references to evaluate several
possible designs by transforming the code using loop interchange
and loop unrolling.

We next describe each of the hardware abstractions and then
present the compiler analysis algorithm used to extract their
parameters for the automatic generation of complete hardware
designs using our target architecture design.

3. Basic Data Storage and Control Structures

We now describe the control and data storage structures illustrated
in Section 2. In the context of our experiments we have developed
code that automatically generates these structures in behavioral
VHDL synthesizable using commercially available synthesis tools.

3.1 Address Generation Unit

This address generation unit (AGU) module, shown in Figure 5 is
used to generate astream of successive addresses corresponding to
a 1D or 2D array reference using two independent index variables
(e.g., a[j][i+1]), and where the index variables are incremented by a
constant amount for each loop iteration.

This AGU implementation uses four kinds basic discrete
components. It uses a RAM module to store the base address of the
stream and the current value of the index variables corresponding to
the latest memory address. For a given memory access the AGU
computes the current memory address by first adding into the value
of the current index a given constant value, typically 1. Next it
multiplies the value of the offset by either 0, 1, or 2
(parameterizable) to account for the sizes of the data values to be
fetched. Finally, the AGU controller will add the current value of
the offset with the base address provided by the RAM. This AGU
module is controlled by a simple FSM that stores back in the RAM
the current values for the index values at the end of each cycle for
utilization in subsequent memory accesses.

img[i,j]

img[i+1,j+2]img[i+1,j+1]img[i+1,j]

img[i+2,j+2]

img[i,j+1]

img[i+2,j] img[i+2,j+1]

C
om

pa
ra

to
r

"0xFF"

"0x00"

img[i,j+2]
threshold

edge[i,j]

sum_v

sum_h

2

2

Pipeline

Units

Parallel/Serial
Data Bus

Control DATAPATH CORE

Parallel/Serial

Controller
I/O Buffer

Unit

Address Bus

M
em

or
y

In
te

rf
ac

e
D

ec
od

er

Status Word

Generation

Address

ChannelChannel

sum_h

img[i+2,j]

img[i+1,j]

img[i,j]
threshold

edge[i,j]

sum_v

2

2

"0xFF"

"0x00"

C
om

pa
ra

to
r

www.manaraa.com

Figure 5. Address generation unit structural definition.

The AGU external interface includes a set of signals to indicate
which entry is to be used in the memory access and the direction of
the access (either read or write). Another set of signals defines an
external entity (typically from the host processor) to write specific
values to the RAM entries and therefore program the contents of the
RAM entries. The concatenation option (also programmable)
allows for faster memory access at the possible expense of memory
in the layout of the array variables. Multiple streams for the same
array might coexist in the same AGU by using distinct entries in the
RAM. In the current implementations we have allocated a single
AGU per memory bank in order to allow concurrent memory
accesses. Clearly resources can be shared by sharing of AGU
entries by multiplexing in time the utilization of the AGU at the
possible expense of performance.

3.2 Queues and Window Queues

Many window-based digital image processing computations offer
the possibility of data reuse by defining a “shifting” window along
a given region of the arrays the computation manipulates. Different
implementation variants are possible. For example, in a two
dimensional domain it is possible to store the area of interest in a
set of queues. Some of the queues, which we can call horizontal
queues, store the values required for a given computation as the
window is progressively shifted along the rows of the image,
whereas another set of queues can be used to store the values of the
lines of the image saving them for when the computation required
the data of subsequent rows - that is the computation shifts by rows
rather than by columns. Figure 6 illustrates the arrangement of
“horizontal” and “vertical” queues, called here awindow queue for
the Sobel computation.

There is clearly a trade-off between the choice of a window queue
and a set of either vertical or either exclusively horizontal queues.
In the first option the whole design has a single data entry point and
therefore a single data stream is required to fetch the successive
data elements. On the other hand, multiple queues offer the
possibility of parallel I/O from distinct memory banks at the
expense of more entries in the corresponding AGUs.

Figure 6. Generic window-based computation using vertical
and horizontal data queues.

Yet another consideration is the ratio between the length of the
horizontal and vertical queues. Longer data queues complicate the
place-and-route phases of the logic synthesis tools due to the need
to route longer sequences of registers further eroding the overall
performance due to longer clock cycles. Our compiler currently
uses Window queues when the ratio of the length of the vertical
queues to the length of the horizontal queues is less than one.

3.3 Input/Output Buffer Controller

The Input/Output Buffer Controller (IBC/OBC) interfaces with the
memory interface unit (MIU) unit which in turns handles the
vagaries of physical memory access signals. Each I/O buffer
controller receives a request for accessing a set of data streams
coded in the entries of an AGU. Internally a IBC/OBC is a simple
counter that signals an AGU and waits for the data to be delivered
writing it to the appropriate data queue input port. Once all of the
data has been fetched or stored the I/O controller signals the end of
a memory cycle to a pipeline controller2 to proceed with its
computation.

If the implementation sought imposes an interface with more than
one AGUs and therefore with more than one I/OBC the compiler
can generate a simple AND gate combining the done signals of all
of the I/OBC it needs to wait for in the current pipeline stage.

3.4 Pipelined Execution Control Unit

We use a two counter-based pipelined controller as depicted in .
One counter keeps track of the iterations executed while the other
of the latency of the pipeline stages. A simple FSM controls the
execution of the prologue, the steady state and the epilogue of the
loop execution3. The FSM description and the decoder
combinatorial circuits are specified by the compiler when
generating the control and depend on the number of stages selected

2 Clearly this is not very efficient as there could be memory access pipelined with
other computation of even staggered in order to exploit specific features of the
memory (e.g., ZBT - Zero Bus Turn-around capabilities of the memory). It is also
conceivable that the pipeline controller interfaces with different I/O controller for
accessing different memory banks. In this case the controller must wait for all I/O
buffer controllers to terminate.

3 We are assuming, and the compiler will enforce it through software pipelining, that
all of the stages of the pipeline have the same latency. It is not the focus of this work
to deal with the specifics of software pipelining.

base offset

8x(n+8) bits

1 0 1 0

1 0

DECODER

RAM
3

1

n-k k

DATA_BUS

k+1
2

n-k

n-k 2 k 2

k

ADDRESS BUS

AGU_ENABLE

READ/WRITE

3

3S REGISTER

FSM
DATA_REQUEST

STREAM_ID

CLOCK

DATA_READY

ADDRESS_READY

add/sub

add/sub

for(i=lb, i < ub, i++)

out[i,j] = func(v0,v1,v2);

length = (ub-lb)

length = (ub-lb)

 for(j=lb; j < ub; j++)

DATAPATH

CORE

 v2 = func(in[i+2,j], in[i+2,j+1],in[i+2,j+2]);
 v1 = func(in[i+1,j], in[i+1,j+1],in[i+1,j+2]);
 v0 = func(in[i,j], in[i,j+1],in[i,j+2]);

.

www.manaraa.com

for the evaluation of the core of the datapath and the number of
iterations of the loop. As pipelining is not the focus of this work we
have used simple pipelining schemes as described in [17].

Figure 7. Pipeline Control Unit (PCU) block diagram.

3.5 Buffered Channel Units and Synchronization

These channels are routinely used for high-speed inter-board
communication. Because of the difficulty to ensure appropriate
timing coherency they are typically controlled using some form of
signal handshaking. Figure 8 below illustrates the control for a
generic unidirectional data channel.

Figure 8. Unidirectional Asynchronous Buffered
Channel.

4. Compiler Analysis and Algorithms

We now describe the basic analysis techniques and the algorithm
our compiler uses to map computation performed in tight loop nests
to hardware in VHDL. For space consideration we focus only on
the automatic derivation of data queues.

Using the analysis results derived from the complier algorithm
described in this section it is possible to generate code in multiple
output formats depending of the capabilities of the intend target
system. If for example the compiler wishes to target other
behavioral synthesis compiler where for example queues are
expressed in a particular paradigm the compiler can generate a
representation suitable for that compiler. If, on the other hand the
target systems does not provided a source level representation for a
given abstraction, our compiler can generate VHDL source code
that explicitly represents the intended abstraction.

4.1 Definitions and Preliminary Analysis

Our analysis is geared for perfectly nested loop with multi-
dimensional array variables using affine index functions i.e.,
var[f1(i1,...,in,c1)][f 2(i1,...,in,c2)]...[f n(i1,...,in,cn)] , and constant
loop bounds. While not all of the loops of interest are in this form,
simple variations that include assignment statements between loops
can be handled by moving the assignment to the inner loop and
predicating its execution to the first iteration of the enclosing loops.

We also rely on previous work for the analysis and classification of
loop permutable nests and data dependence analysis information as
distributed in the SUIF system [12]. This preliminary analysis
determines if a loop is parallelizable and which of the loops in the
nest are permutable. We use other analysis included in the SUIF
system release that determines which sections of a given array are
read/written and which arrays are part of a reduction operations. We
focus on loop with no true loop-carried dependences. Other
researchers have addresses the issue of datapath core generation for
loops with true dependences (e.g., [16]).

4.2 Input Data Reuse

The basic idea of data reuse steams from the fact that multiple
references to the same array may access the same data items at
different, or even the same, iterations of a loop. Rather than
fetching the same data again from memory in most cases it would
be beneficial to store the data in registers for subsequent use.

We use the definition of self-temporal reuse and group-temporal
reuse from [15]. Given a referenceA[Hi+c] iterations i1 and i2
reference the same data item iffHi1+c = Hi 2+c, that is, when the
vectord = (i1-i2) is in the null-space ofH. We say that there is data
reuse for arrayA along the vectorr iff H d = 0 and the vectord is in
the iteration space of the loop. If, however, the loop nest has
multiple references to the same arrayA it is possible that different
iterations also reference the same data for distinct references. As
before two referencesA[Hi1+c1] andA[Hi2+c2] denote the same
data iffHi1+c1 = Hi2+c2.

Unlike [15] our analysis requires that all of the references for a
particular arrayA inside the loop have the same access matrixH.4

Since our analysis generate input and output queues to store the
various accesses to the array variables it has to be very precise
about exactly which references are inserted at run-time into the data
queues and which are not. Items already in a queue cannot be
replaced (as in a cache) and so array accesses with distinct access
matrices could complicate the analysis. On the other hand, and
from a practical stand point, not that many computations of interest
use multiple references with distinct access matrices. Even if loop
unrolling transformation is applied to a single array reference in a
loop by construction it is guaranteed that all of the resulting
references will have the same access matrixH.

4 The case of different access matrices offers very little chance for data reuse. If the
compiler applies loop permutation reuse can occur in one of the dimension along
which the data is fetched in vectors. Nevertheless the points of retrieval of data
inside the queue are in increasingly strides making it difficult to generate a datapath
that is not a fully connected set of registers.

Counter Counter

Register Register

FSM

Start

Done

Load Load

Decoder

n k

Controlled Datapath

m

RESET

DATA

WRITE

READY

READ

READY

Tr
i-S

tat
e

DA
TA

RE
GI

ST
ER

S

nnn

www.manaraa.com

4.3 Quantifying Reuse and Memory Accesses

We define data reuse along a loop nest directiond, as the number of
array references per iteration of the loop alongd whose data values
can be reuse by using the values stored in data queues. A data queue
of length n from which the computation extractsm values per
iteration has a data reuse of (m/n). High number of data reuse
metrics indicate fewer accesses per iteration. Loop invariant data of
sizek are stored in registers and contributek units for this metric.

Conversely we defined required memory bandwidth per iteration of
the loop along the directiond, as the number of memory access
required to fetch the data into the data queues and other input/
output registers. Values that are loop invariant need only to be
loaded once and are ignored in this metric.

Because digital signal processing applications typically manipulate
data items of smaller bit width, the reuse direction d also exposes
the opportunities for multiple data items fetched per memory
access. For example, if a image pixel is encoded in 8 bits a single 32
bits memory fetch can retrieve 4 consecutive image pixels. For
example, if a image pixel is encoded in 8 bits a single 32 bits
memory fetch can retrieve 4 consecutive image pixels. To include
this performance boost in our memory bandwidth metric we further
refine the notion of memory bandwidth to include this packing
factor. The memory bandwidth metric evaluation functions is
shown in Figure 9.

double eval_bandwidth_metric(loop_nest loop_body,
 vector reuse_dir, vector layout_dir){
 double metric = 0.0;
 for all data queues q do
 b = base_ref(q);
 access = (b.access_matrix . reuse_dir);
 if(accessT . layout_dir = 0)
 metric += 1.0;
 else
 if((b.data_size * b.access_stride) > mem_word_width){
 metric += 1.0;
 else
 metric += ((b.data_size*b.access_stride))/(mem_word_width);
 return metric;
}

Figure 9. Memory access per iteration evaluation function.

This algorithm uses the base reference for each data queue (see next
Section) the array data element size and the stride of the accesses
through the array references mapped to each data queue. Our
compiler extracts all these basic quantities from the source program
and through the data dependence analysis as explained next.

4.4 A Simple Data Reuse Algorithm

We structure the presentation of our data reuse analysis algorithm
into several sections. First we describe how the algorithm uses data
dependences to extract the set of possible reuse vectors and
directions. Next we describe how the algorithm identifies the
possible input and output data queues. At the end of this section we
describe how to explore multiple designs guided by the memory
access metrics described in the previous section.

4.4.1 Identifying Reuse Vectors

The basic idea of the algorithm is to use input/output data

dependence analysis techniques to identify data references in the
loop body that have constant distance data dependence vectors [15].
The algorithm, depicted in Figure 10, scans the data references of
the loop body one array variable at a time, and computes for each
pair of references for the same variable the corresponding the
distance vector. It discards non-constant vectors as well as distance
vectors that are not elementary (i.e., multiple of any of the axis).
The algorithm arranges the data references in a matrix and uses the
DependenceTest function in the SUIF distribution to compute the
actual distance vectors between each pair of references.

The constraint of elementary reuse vectors is not a fundamental
limitation, but rather an implementation and code generation
convenience. While some computations such as stencil
computations do exhibit “diagonal” reuse vectors code generation
for exploiting the reuse is complex unless the compiler can apply
loop skewing transformations to the source code.

{vector_list,matrix} identify_reuse_vectors(loop loop_body,
 vector DependenceTest(), array_var var){
 vector_list = new list;
 dependence_matrix = new matrix;
 for all data references dr1 of var in loop_body do
 for all data references dr2 of var in loop_body do
 vec =DependenceTest(dr1,dr2);
 if(vec is elementar_vector()) {
 vector_list += {vec};
 dependence_matrix(dr1,dr2) += {vec};
 }
 end
 end
 return {vector_list,dependence_matrix};
}

Figure 10. Extracting data reuse vectors algorithm.

4.4.2 Identifying Data Queues

Given the data dependence distance vectors in the dependence
matrix the algorithm next computes for a given array variable and
for a given direction vector the independence set of maximally
connected references.

{queue_list} identify_data_queues(matrix dep_matrix,
 array_var var, vector reuse_direction){
 queue_list = new list;
 for all data references pair (dr1,dr2) in dep_matrix do
 if(dr1 unmarked and dr2 unmarked)
 dq = new queue; queue_list += {dq};
 dq += {dr1, dr2}; mark dr1; mark dr2;
 if(dr1 marked and dr2 unmarked)
 dq = data_queue(dr1); dq += {dr2}; mark dr2;
 if(dr1 unmarked and dr2 marked)
 dq = data_queue(dr2); dq += {dr1}; mark dr1;
 else
 merge_data_queues(data_queue(dr1),data_queue(dr2));
 end
 return queue_list;
}

Figure 11. Algorithm for identifying data queues.

Two referencesdr1 and dr2 are connected along the elementary
reuse directionei iff there exists a data dependence vectorv = k ei
relatingdr1 anddr2. A data queue is defined as the connected set of
references that share the same distance vector between references.
The base for each data queue is the reference for which there is no
entry (*,dr) in the data dependence matrix. Figure 11 presents this
analysis where we use a simple marking algorithm to determine if a
given reference has been assigned to a particular data queue. Once
identified the base of a data queue the compiler can extract the base
address, offset and stride for that data queue.

www.manaraa.com

4.4.3 Exploring Possible Implementations

The compiler uses the algorithms described previously to generate a
set of possible implementations one for each of the identified reuse
vectors. The compiler first extracts the set of possible reuse vectors
by inspection of the entries in the data dependence matrices for all
of the array variables. Next the compiler creates the set of possible
data queues for each of the direction vectors and evaluates their
performance using the data reuse and memory access metrics. Our
compiler currently chooses the version with the lowest aggregate
memory access metric.

4.5 Implicit Loop Unrolling Data Reuse Analysis

Unfortunately not all of the loops have the data references exposed
as in the Sobel example in Section 2. In some cases the computation
is expressed in a compact form using a deeply loop nest with a
single reference per array variable rendering innefective the
analysis described above.

To address this shortcoming we have developed an analysis that
examines the effects of loop unrolling on the set of generated array
references and extracts the possible set of data queues for the
unrolled data references. Because this analysis does not actual
unrolled every loop it checks in an explicit fashion, but rather
examines its implications on the set of generated references, we call
this an implicit loop unrolling data reuse analysis. The main
advantage of this implicit unrolling strategy is that our compiler
does not have to incur in the space, and therefore time, costs of
doing explicit loop unrolling, in particular when the loop bounds
are large. In addition this implicit unrolling approach provides a
handle when the loop bounds are unknown and/or when the
compiler wishes to do partial unrolling.

We now describe the analysis algorithm the compiler uses to
determine which of the loops should be unrolled and which should
be exchanged to expose the maximal data reuse. We make the
assumption (and this is often the case in practice) that the array data
references inside the loop have the property that every loop index
variable can be present in at most mode one array dimension. We
call this property index orthogonality and greatly simplifies the
analysis and determination of reuse directions. The outline of the
algorithm is illustrated in Figure 12 below.

for each legal unrolling l in L do
 for every data reference dr in DR do
 if(dr.am.unroll = 0) then
 listloopinv += {dr};
 for every data reference dr in {DR - listloopinv} do
 for every non-zero entry i of l do
 vproj = dr.am.ei;
 if(vproj != 0 and li . ei != 0) then
 // vproj by definition is either zero or unit basis vector
 vcoupled = v in loop such that dr . am . v = vproj
 if(vcoupled != 0) then
 reuse along vcoupled;
 queue layout = mask(dr.am.l);
 }
}

Figure 12. Data reuse algorithm with implicit loop unrolling.

The algorithm explores all possible legal combinations of loop

unrolling. For each loop unrolling it classifies the array references
as loop invariant after unrolling or as potentially exposing reuse
along a subset of the remaining rolled loop dimensions. If a given
reference is loop invariant there will be reuse carried along any of
the rolled loops. The algorithm next concentrates on the remaining
loop variant references. First the algorithm determines the set of
projected dimensions as the set of array dimensions whose indices
vary with the set of unrolled loops. Because of the orthogonality
only a single dimension varies with a single unrolled loop. Next the
algorithm determines the rolled loop dimension that is couple with
the same unrolled dimension that projects onto the same array
dimension. This couple dimension will be the loop along which
reuse will be carried as successive unrolled data references have
replicas of the reuse loop index variable when unrolling is applied.
For each reference the algorithm collects the set of reuse vectors for
each of the loop unrollings. In the last step the algorithm determines
for each of the reuse directions which of the data references exhibit
reuse along a given reuse direction. The algorithm also computes
the dimensions and shape of the queue to include the unrolled data
references. Figure 13 illustrates the various algorithm results for a
window-based correlation algorithm and for a particular loop
unrolling vector(m,n,i,j) = (0,0,1,1).

 for(m=0; m < M; m++){ for(n=0; n < N; n++){ // Loops m and n
 for(n=0; n < N; n++){ for(m=0; m < M; m++){ // Interchanged
 sum = 0; sum = 0;
 for(i=0; i < I; i++) .
 for(j=0; j < J; j++) . loop body unrolled (I x J) times
 if(mask[i][j] != 0) .
 sum += array[m+i][n+j]; .
 res[m][n] = sum; res[m][n] = sum;
 } }
 } }

a. Original source code. b. Transformed source code

 DR = {dr1 = mask[i][j], dr2 = array[m+i][n+j]}
 unroll vector l = [0011];
 dr1.am = [0010|0],[0001|0];
 dr2.am = [1010|0],[0101|0];

 listloopinv = {dr1} = {mask[i][j])}
 dr = dr2 = array[m+i][n+j]
 case ei = [0001] case ei = [0010]
 vproj = [01] vproj = [10]
 vcoupled = [0100] vcoupled = [1000]
 reuse = [0100] // along loop n reuse = [1000] // along loop m
 layout = dr2.am.[0011] = [* *] layout = dr2.am.[0011] = [* *]

Figure 13. Implicit loop unrolling analysis example.

Because the number of possible loop unrollings grows
exponentially with the depth of the loop nest we have limited the
number of explored loop unrolling by considering only legal
unrollings that lead to one or more of the array variables to become
loop invariant after unrolling. Clearly future compiler analysis
implementations should also consider the impact on the resources
by loop unrolling. Given the results of the analysis the compiler
next evaluates each of the candidate solutions based on the memory
access metric described in Section 4.3.

4.5.1 VHDL Code Generation

Given a loop nest a selected reuse direction and corresponding data
queue implementation, the compiler uses a set of predefined control
structures to generate and program the control structure described
in Section 3. To generate the datapath corresponding to the

www.manaraa.com

statements in the loop body our compiler traverses the abstract
syntax trees in SUIF generating an internal datapath representation
where identical scalar references and data values are mapped to
registers. The current implementation handles limited set of
constructs in C and uses a simple pipelining implementation guided
by the set ofassign statements in the loop body. In the current
implementation we have ignored the issues related to bit widths and
optimizations related to using small than the predefined bit width
for convenience purposes. Exploring these optimizations is
orthogonal to the work described here and can be easily composed
with the current implementation.

The current implementation of our compiler generates VHDL
specifications for the control structures, and data queues. these
structures are instantiated using predefined templates. Each
structure is described using a behavioral or in some cases by
structurally composing behavioral components using the “port
map” VHDL language construct.

While the current implementation works for a specific vendor logic
synthesis, we have neither relied nor exploited any vendor specific
VHDL style or library implementations. Clearly the data gathered
by the compiler analysis described here would allow the compiler
to exploit FPGA library component features by adequately
choosing among a myriad of possible implementations customized
for each of the targets architectures.

5. Experimental Results

We now present experimental results for the compiler analysis and
semi-automated compiler generated designs. We are currently
unable to fully automatically generate complete designs using a set
of library functions we have developed. Instead we use the
information provided by the compiler to a file to feed a code
generation program manually and merging several VHDL files for
the complete implementation of a design.

5.1 Methodology

We used a set of complete applications written in C for the
evaluation of the compiler analysis and compiler generated designs.
The applications are compiled using SUIF v1.1.2scc distribution
tool. We then used the compiler algorithms described in Section 4
(approx. 8,000 lines of C++) to analyze and select a particular
implementation for the loop nests of interest in each application.
We then used the results of the compiler analysis to generate VHDL
files using a set of predefined template generation functions
(approx. 10,000 lines of C code). We then merged the VHDL files
by hand and used the Xilinx Foundation Series V2.1i logic
synthesis tools to generate logic design data and bitstream files.

We report results for the logic synthesis running on a Pentium II PC
running at 450 MHz and with 128 Mbytes of memory for the
generation and evaluation of the compiler generated designs. In
our synthesis experiments we used the Virtex 1000BG560 FPGA
series and used a low effort and optimized for speed place-and-
route (P&R) settings. The timing results we report are extracted
from the generated log files with timing analysis with complete
(100%) path coverage.

5.2 Applications

5.2.1 Sobel Edge Detection - Sobel

This application implements the Sobel edge detection algorithm
over a 64-by-64 gray scale image. The application uses two 2D
array, one to store the image and another to store the results of the
computation. The core of the computation is performed in a doubly
nested loop. At each loop iteration the computation uses a 3-by-3
window of image pixels to compute vertical and horizontal gradient
values. Using these two metrics the algorithm decides to assign
either a ‘1’ value or a ‘0’ value to the result array pixel.

5.2.2 String Pattern Matching - Pattern

This application performs a simple character by character matching
of patterns against substrings in a given string of characters. Th
original code is as depicted in Figure 14. It scans thepattern array
variable repeatedly and compares it against shifted versions of the
array str variable. If at least one of the characters differs the
corresponding result of the matching is set to the value 0.5

for(i=0; i < STRING_SIZE-16; i++){
 res[i] = ‘1’;
 for(j = 0; j < 16; j++){
 if(pattern[j] != str[i+j]){
 res[i] = ‘0’;
 break;
 }
 }
}

Figure 14. String pattern matching computation.

5.2.3 Automatic Target Recognition - ATR

This application performs matchings between a given template and
windows of an gray scale image. The basic computation consists of
binary image correlations between the template matrix and shifted
windows over the input image as illustrated in Figure 15.

for(m=0; m < IMAGE_SIZE-MASK_SIZE; m++)
 for(n = 0; n < IMAGE_SIZE-MASK_SIZE; n++){
 sum = 0;
 for(i=0; i < MASK_SIZE; i++)
 for(j=0; j < MASK_SIZE; j++)
 if(mask[i][j] != 0)
 sum += image[m+i][n+j];
 res[m][n] = sum;
 }

Figure 15. Shifted window binary correlation computation.

5.3 Results

We now describe the performance results of our code generation
strategy and quantify the simulated performance of the resulting
generated designs. We begin this discussion by presenting the
compilation and synthesis metrics.

Table 1 presents the compilation and synthesis results. For each of
the tested applications we report the number of source code lines
for both C and the VHDL generated codes (excluded comments and

5 We have also implemented an analysis capable of recognizing the presence of
“break” and “continue” statements in typical search and matching computations.
This analysis coupled with the data reuse analysis allows a compiler to eliminate the
break statement in this loop without changing the semantics of the computation.

www.manaraa.com

blank lines). We report the number of loop nests in each application
and the number of loops the compiler selected for hardware
execution. For the generated VHDL source code we report on its
size, the number of distinct components and instances used. Finally
we report on the compilation analysis and synthesis speed.

Table 2 presents the results of the compiler analysis. For each
application we report on the number an length of the data queues
the algorithm has identified and the unrolling vector that has the
lowest memory access metric.

For theSobel application the compiler recognizes the opportunities
of two reuse directions. Because the current compiler
implementation chooses the implementation with the lowest
memory bandwidth we therefore report only on the performance
results of the selected version of Sobel. As forPattern the analysis
recognizes that unrolling loopj is high profitable as thepat variable
becomes loop invariant. The resulting implementation should have
a single queue of length 16 for thestr variable and another queue of
the same length for thepat variable. Finally theATR application has
3 loops in which there is a substantial amount of reuse. We present
only the results for the loop illustrated in Figure 15. For this loop
the analysis selects the unrolling of loopi and j, which reveals a
maximum reuse for a 32-by-32 queue for themask variable which
is loop invariant and a 32-by-32 queue for theimg variable.
Unfortunately the design corresponding to the full unrolling of the
two inner loops is too large to fit on a single FPGA. Instead we
partially unroll each of the two inner loop by a factor of 16,
therefore creating 16-by-16 data queues. This consumes less FPGA
resources but significantly increases the control complexity and
therefore the simulated execution time.

Table 3 shows the simulated performance results for the generated
designs. It includes the overall simulated clock speed, the number
of flip-flops and latches used as well as the number of LUTs and
equivalent gates counts. For raw performance comparison we
included the number of execution cycles required to complete the
entire loop nest computation of each application. Finally we report
on the area of the Virtex1000 reported used by the P&R tool.

The table shows the three designs to attain respectable clock rates
for automatically derived designs. Recall these designs were
generated automatically by manually using the results of the
analysis with the library of code generation functions we have
implemented using generic, and simple, parameterized modules
(e.g, adders, sub, comparators, multiplexors, etc.). These results

reveal the compiler is able to identify the opportunities for data
reuse and generate the data required to automatically generate a
complete VHDL design. Because of their relative small size, the
generated designs forSobel andPattern are synthesized and routed
fairly quickly. The design corresponding to the ATR application
uses 55% of a single FPGA resource and takes much longer to
synthesize (even with hierarchical P&R). We attribute this
discrepancy to the PC memory trashing effects.

The performance results (simulated clock rates) also reveal that the
limiting factor is the control datapath as the core datapath are
capable of much higher clock rates. Several factor contribute to
this. First the generality of the modules used. As an example our
memory access subunit is fairly generic as it can handle both
SRAM as DRAM modules. This clearly introduces latency in terms
of clock cycles. Our interfaces allow for the presence of multiple
memory interface module for distinct memory banks with a
common pipelining control unit. Several other design aspects have
not been explored in this paper as our focus was the design of a
compiler analysis algorithm to allow the automatic generation of
hardware implementations. We have not explored the trade-offs in
the design of the pipelining control unit and the possible
refinements of pipelined memory access unit. As such our
simulation performance results can be improved by using control
units with more advanced features.

6. Related Work

Several research efforts have concentrated on the development of
new reconfigurable architectures. The RaPiD [6] architecture is a
coarse-grained field-programmable architecture composed by
multiple functional units such as ALUs, multipliers, registers and
RAM blocks. These units are organized linearly over a bus and
communicate through registers in a pipeline style. As with other
efforts the authors have develop a specific extension to the C
programming language that exposes some of the architecture to the
programming model hence simplifying the compilation process.

At CMU researchers developed the PipeRench [10] architecture
geared solely to pipelined computations with virtually unlimited
number of stages. Programmers rely on compilers to map their
applications, written in C, to partition their computation to the
computational capabilities of each strip. The compiler then
generates a schedule of the virtual strips and relies on hardware to
swap in and out the configuration for each of the strips on demand.

The MIT RAW [3] is a coarse-grained mesh architecture where
each of the computing core has a simple controller, a set of
registers, a local RAM block and programmable communication
channels. The compiler partitions the computation and data among
the cores and programs the communication channels to best suite
the communication pattern for each application.

Source Code Metrics VHDL Code Metrics Analysis & Synthesis Time

App Code
Lines

Loop
Nests

Loop
Hard

Code
Lines

Num
Comps

Num
Inst

Analyzes
Time

Emit
Time

Synthesis
Time

Sobel 80 3 1 2,340 39 134 < 1 sec < 1 sec 10 min

Pattern 98 4 1 2,445 32 111 < 1 sec < 1 sec 8 min.

ATR 300 5 3 4,400 38 386 < 1 sec < 1 sec 780 min.

Table 1: Compilation and synthesis results.

Application
Unrolled
Loops

Reuse
Vector

Data Queues
Length

Data Queue
Data Reuse

Mem
Band

Sobel - (x,y) = (0,1) 3 3 6 1.0

Pattern {j} (i) = (1) 2 16 31 0.5

ATR {i,j} (m, n) = (0,1) 2 32-by-32 2016 8.25

Table 2: Data reuse analysis results.

Application
Core

Datapath
Clock (MHz)

Global Design
Simulated

Clock (MHz)

Number
FF & Latch

Number
LUTs

Equiv.
Gates

Simulated
Execution

Cycles

Virtex1000
Area

Sobel 56.5 26.5 840 727 11,375 2,196,480 5%

Pattern 56.5 26.0 782 771 11,239 287 5%

ATR 52.5 25.7 9,163 9,649 145,759 182,272 55%

Table 3: Simulated target designs performance metrics.

www.manaraa.com

At Berkeley researchers integrated a MIPS core with reconfigurable
hardware to be used as an accelerator in a co-processor integration
model [19]. The reconfigurable hardware consists of a set of 2D
arrays of CLBs interconnected by programmable wiring. Each of
the array has a section dedicated to memory interfacing and control
and uses a fixed clock. The reconfigurable array has direct access to
memory for fetching either data or configuration data hence
avoiding both data and reconfiguration bottlenecks.

These efforts differ from our research in two main aspects. First and
as new architectures, these efforts have chosen which components
of the systems are reconfigurable and what are the macro
instructions the non-reconfigurable portion can execute. In our case
we are given a set of FPGAs and an external interface and have to
synthesize from the ground up all of the control structures in the
FPGA to allow them to operate autonomously. Because these
approaches do not use commercial synthesis tools they avoid the
performance and interface issues with place-and-route.

Like our effort other researchers have focused on using automatic
data dependence and compiler analysis to aid the mapping of
computations to FPGA-based machines. Weinhardt [17] describes a
set of program transformations for the pipelined execution of loops
with loop-carried dependences onto custom machines using a
pipeline control unit and an approach similar to ours. He also
recognizes the benefit of data reuse but does not present a compiler
algorithm. No references in the literature mention multi-
dimensional arrays as well as the implementation of a decision
procedure to analyze the various trade-off choices for the
implementation of data queues. We further use loop unrolling to
expose more array references in the program and therefore infer
data reuse for the unrolled loops.

The Napa-C compiler effort [7,8] explores the problem of
automatic mapping array variables to memory banks. This work in
orthogonal to ours. We are interested in implementing an efficient
and autonomous computing engine on each FPGA of a multi-FPGA
board. Their RISC-based interface as expected is very similar to our
target design architecture as a way to control the complexity of the
interface between the FPGAs and the host processor. A major
difference is the fact that we target commercially available
components and not an embedded custom architecture.

7.0 Conclusions

We described a compilation and synthesis scheme for the automatic
mapping of loop nests that access multi-dimensional arrays to
hardware implementations. We have implemented a compiler
analysis algorithm capable of automatically generating efficient
implementations for these loop nests. This algorithm exploits the
data reuse and array memory layout to minimize the number of
required memory accesses. The simulation experiments, although
limited, suggest the code generation approach combined with our
compiler analysis can be used as a basis of a successful compilation
and synthesis approach for digital image processing computation
onto FPGA-based computing engines.

Bibliography

[1] Annapolis Micro Systems Inc., “WildStarTM Reconfigurable Computing
Engines. User’s Manual R3.3”, 1999.

[2] J. Arnold, “The Splash 2 Software Environment”, In Proc. IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM ‘93), IEEE Computer Society
Press, Los Alamitos, 1993, pp.88-93.

[3] J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua and S.
Amarasinghe.”Parallelizing Applications into Silicon”, In Proc. IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM ‘99), IEEE Computer Society
Press, Los Alamitos, 1999, pp. 70-81.

[4] P. Bellows and B. Hutchings,“JHDL - An HDL for Reconfigurable Systems”, In
Proc. IEEE Symp. on FPGAs for Custom Computing Machines (FCCM’98),
IEEE Computer Society Press, Los Alamitos, 1998, pp. 175-185.

[5] M. Chu, N. Weaver and K. Sulimma, “Object-Oriented Circuit Generation in
JAVA”, In Proc. IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM’98), IEEE Computer Society Press, Los Alamitos, 1998, pp. 158-165.

[6] D. Cronquist, P. Franklin, S. Berg and C. Ebeling, “Specifying and Compiling
Applications for RaPiD”, In Proc. IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM’98), IEEE Computer Society Press, Los
Alamitos, 1998, pp. 116-125.

[7] M. Gokhale and J. Stone, “Automatic Allocation of Arrays to Memories in
FPGA Processors with Multiple Memory Banks”, In Proc. IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM’99), IEEE Computer Society
Press, Los Alamitos, 1999, pp. 63-69.

[8] M. Gokhale and J. Stone, “Napa C: Compiling for a Hybrid RISC/FPGA
Architecture”,In Proc. IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM’98), IEEE Computer Society Press, Los Alamitos, 1998, pp. 126-135.

[9] M. Gokhale and B. Schott, “Data Parallel C on a Reconfigurable Logic Array”,
Journal of Supercomputing, 9(3):291-313, 1994.

[10] S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor and R.
Laufer, “PipeRench: A Coprocessor for Streaming Multimedia Acceleration”, In
Proc. of 26th Intl. Symp. on Computer Architecture (ISCA’99), ACM Press,
New York, 1999.

[11] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor”, In Proc. IEEE Symp.on FPGAs for Custom Computing Machines
(FCCM’97), IEEE Computer Society Press, Los Alamitos, 1997, pp.12-21

[12] “The Stanford SUIF Compilation System”. Public Domain Software and
Documentation available at http://suif.stanford.edu.

[13] J. Villasenor, B. Shoner, K. Chia and C. Zapata, “Configurable Computing
Solution for Automatic Target Recongition”, In Proc. IEEE Symp. on FPGAs for
Custom Computing Machines (FCCM ‘96), IEEE Computer Society Press, Los
Alamitos, 1996, pp. 70-79.

[14] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. “Baring it
all to Software: RAW Machines”, IEEE Computer, Sept. 1997, pp. 86-93.

[15] M. Wolf and M. Lam, “A Loop Transformation Theory and an Algorithm for
Maximizing Parallelism”, IEEE Trans. on Parallel and Distributed Systems,
Oct., 1991.

[16] M. Wolfe, High-Performance Compilers for Parallel Computing, Addison-
Wesley, 1996.

[17] M. Weinhardt and W. Luk., “Pipelined Vectorization for Reconfigurable
Systems”, In Proc. IEEE Symp. of FPGAs for Custom Computing Machines
(FCCM’99), IEEE Computer Society Press, Los Alamitos, 1999, pp. 52-62.

[18] M. Weinhardt and W. Luk, "Memory Access Optimization and RAM Inference
for Pipeline Vectorization”, In Proc. of the 9th Intl. Workshop on Field
Programmable Logic and Applications (FPL'99), Springer Verlag LNCS Vol.
1673, 1999, pp.61-70.

