Automatic Synthesis of Data Storage and Control Structures
for FPGA-based Computing Engines

Pedro Diniz and Joonseok Park
Information Sciences Institute / University of Southern California
4676 Admiralty Way, Suite 1001
Marina del Rey, California, 90292-6695
{pedro,joonseok}@isi.edu

Abstract that is to be mapped onto each FPGA. For this code, the
programmer must specify the datapath that will carry out the

Mapping computations written in high-level programming computation using an hardware description language. In addition
languages to FPGA-based computing engines requirethe programmer must tie the datapath with its controller, typically a
programmers to generate the datapath responsible for the core dinite-state-machine (FSM). This FSM ensures the data is stored
the computation as well as control structure to generate theand retrieved to and from the FPGA ports on a specific clock cycle.
appropriate control signals to orchestrate its execution. This papelf a pipelined implementation is sought the programmer must also
addresses the issue of automatic generation of data storage attake responsibility for the correct synchronization between pipeline
control structures for FPGA-based reconfigurable computingstages and for handling the input/output data at the correct rate.
engines using existing compiler data dependence analysi]]]
techniques. We describe a set of parameterizable data storage aFor architectures with multiple FPGAs the programmer must
control structures used as the target of our prototype compiler. wensure the rates of each FPGA match the rate of the respective
present a compiler analysis algorithm to derive the parameters ccontrollers. If the data fqr each FPGA is fetched from memory by a
the data storage structures to minimize the required memor€xternal controller (typically a general purpose processor) the
bandwidth of the implementation. We also describe a complefProgrammer must generate a correct control_programmer for all of
compilation scheme for mapping loops that manipulate multith® FPGA executing simultaneously. This control program
dimensional array variables to hardware. We present preliminary(0ccasionally implemented by a designated FPGA) in effect mimics
simulation results for complete designs generated manually usinthe execution of concurrent threads, on each FPGA and mqst ensure
the results of the compiler analysis. These preliminary results shothat each data consumed and generated by each FPGA is done at

that is possible to successfully integrate compiler data dependenth€ correct clock cycle. When the speed of the devices or the
analysis with existing commercial synthesis tools. datapath implementations on the FPGA changes the programmer

must revise and change the controller and/or the program executing
Keywords: FPGA-based reconfigurable computing architectureson the host.

compilation, program analysis, data queues. . .) o)
Of particular interest to this research are digital image processing

. applications. These applications tend to concentrate the
1. Introduction computation in tightly nested loops that manipulate dense multi-
dimensional array data structures expressed in languages such as
MatLab or C. The rapid translation of these computations to FPGA
posses several problems. First, to our knowledge no commercially
available synthesis tool can translate multi-dimensional array
access patterns to hardware that performs the fetching of
: ¢ o A . ~'consecutive array index accesses. The option of array linearization
computing machln(_es. Typical architectures cor_15|sts of a VaryMis not desirable in many cases as it complicates high-level compiler
number of computing FPGAs attached to their local memories, oy is and produces code that is not only hard to analyze but also
These FPGAs are connected via a predefined topology and thiiticit to maintain. Second, the lack of advance data dependence
execution supported either by an extra controller unit or by inavsis precludes the application of analysis techniques for the
general purpose processor [1,2,13]. automatic derivation of efficient storage models for the data
p . ' . ‘manipulated in tight loop nests. Many efficient implementations of
rogramming these reconfigurable systems however, is a elabor(th tai d b ivel dat
and lengthy process. The programmer must master all of the deta €se computations done by programmers pervasively ‘use data
queues to significantly reduce the required number of memory

of the hardware architecture, partition the computation and data faccesses in effect caching data in internal registers. This experience
that it can allocate functional units to each of the computing ’ ing nt gl - ThIs exper
suggests these data storage structures are very important in the

FPGAs. In this process the programmer must partition the cod fficient implementation of th | f computation
between the code that orchestrates the whole execution (typicallye cie piementation ot these classes ot computations.

C program executing on a general purpose processor) and the €, yhis paper we address the issue of control and data storage
Funded by the Defense Advanced Research Project structures for FPGA-based reconfigurable computing engines. We
Agency under contract number F30602-98-2-0113 begin by describing a set of parameterizable control blocks. Like

The extreme flexibility of Field-Programmable-Gate-Arrays
(FPGASs) coupled with the widespread acceptance of hardwai
description languages such as VHDL or Verilog have made FPGA
the medium of choice for fast prototyping of hardware
implementations and a popular vehicle for the realization of custor

recent approaches to module generators (e.g., [4,5]) the contrBhe rest of this paper is structured as follows. We next introduce a
blocks presented in this paper can be combined in aggregate contset of parameterized modules and the proposed compilation target
structures. We describe address generators with auto-incremeantchitecture via an example. Next we describe the various control
capabilities, buffered input and output queues and pipeliningtructures and their rationale. Section 4 describes our compiler
control structures. In the context of FPGAs where minimizing theanalysis algorithms for the automatic derivation of data queues.
number of reconfiguration is still an important metric, the structureSection 5 presents preliminary simulation experimental results for a
proposed in this paper can be used by multiple datapath and/set of digital image processing applications. In section 6 we survey
reused across different FPGA configurations. related work and conclude in section 7.

We also describe the application of data dependence analysis to ge E |
automatic generation of data queues for computations thét: xample

manipulate multi-dimensional array using affine index acces . .
e now illustrate the use of basic data storage and control

functions. The goal of this analysis is to explore a wide range o tructures for the automatic mapping of an example computation
program transformations with the goal of reducing the number of ;JO :n FSPGA-baseléI com ' tin 2?1' %e The cém ptat'on .Eu r'tlen
required memory accesses, and therefore reducing the requir88 puting engine. putation is wri

memory bandwidth for a particular implementation. We developeclln C as depicted in Figure 1. It consists of a single loop nest and

a compilation and synthesis strategy using a set of high-leve(ioerL.ltes theTiob_el edg_e d(:tecgo_n algzog_thm over ?n 8 bltfgray-
parameterizable building blocks that allows a compiler to>c&i€ Image. The image 1S stored In a c-dimensiongiarray o

automatically generate complete designs for boards consisting Sparacters. The outputis stored in the 2-dimensieigéarray.
multiple computing FPGAs without host processor direct char img[SIZE][SIZE], edge [SIZE][SIZE];

intervention. We have implemented and tested the algorithms anght uhi, uh2, threshold:

the code generation (in synthesizable VHDL specifications) for afor (i=0; i < SIZE - 4; i++) {

set of kernel digital image processing applications. We provide for (j=0;j < SIZE - 4; j++) {

experimental simulation results for the automatically generated set uhl= (((- img[il[i]) + (- (2 * img[i+1][i])) + (- img[i+2][j]))

of designs for this set of computations. + ((img[i][j-21) + (2 * img[i+1][-2]) + (img[i+2][i-2])));
uh2. = (((img[i][) + (img[i+2]0))
This paper makes the following contributions: + (-2 * img[i][-1]))+(2*img][i+2][j-1])

, + (- img[i][j-21) + (img[il[i-21)));
1. It presents a set of parameterizable control and data storage if ((abs(uhl) + abs(uh2)) < threshold)

structures for the mapping of computations consisting of loops edge[i][j]="0xFF”;
that manipulate multi-dimensional arrays with affine access else
functions onto FPGA-based systems. edge[i][j]=""0x00;

2. It presents an analysis algorithm for the automatic derivation
of these control structures. Of particular significance if the
automatic derivation of the data queues (number, length and

stride of the corresponding array accesses). The computation generates for each output image pixel either a

3. It presents a simple algorithm that evaluates several possibf€™© value “0x00” or a 1 value “Oxff’. The computation uses a
designs that exploit data queues. This algorithm uses the datgtical and an horizontal gradient operator defined by a 3-by-3
access patterns in the loop nest to choose a design with tR&€l window around the pixel being evaluated to decide if the
lowest number of required memory accesses or bandwidth. Corresponding output pixel value should be 1 or 0.

4. It describes a compilation synthesis scheme for FPGA-basesl naive implementation of this computation onto an FPGA (or a set
computing engines for computations expresses as loop nest$ FPGA over which we have partitioned the input data and
that manipulate array variables with affine index functions. computation) could use the datapath core presented in Figure 2.

5. It presents preliminary experimental simulation results for the! NiS datapath core follows a direct RTL translation of the set of
statements in the loop body. Missing from this design are the

automatic translation of a set of computation using our compi= ;) X
lation/synthesis strategy and our set of defined control StruC(;ontrol structures responsible for fetching and storing the data as

tures using commercial synthesis tools. These preliminar;‘/"e" as implementing pipelining execution schem_e. Figure 3 pelow
results indicate these control structures can serve as the bag|gstrates the conceptual layout of the target architecture design our

of a successful compilation and synthesis flow. compiler uses to generate complete designs.

Figure 1. Sobel Edge detection computation example.

We believe the control and data storage structures described he-l;g's a_rchltecture has several auxiliary control structu_res to the
can play an important role as part of a library of synthesizabl€X€cution of the core datapath. Because our compiler targets
modules, but as well as used to facilitate the tasks of a compil@Pelined execution techniques the datapath architecture include a
tools in the mapping of high-level programming constructs t05|mple pipeline control unit. This unit keeps track of which
hardware. The fact that programmers often use similar data and

control structures in their hand crafted designs is clear evidence of
their important in the effective mapping of digital image processing In reality these data storage structures are delay lines where the computation can

; : . directly access any element of the line at any time. By lack of a more commonly
computation to FPGA-based |mplementat|ons. accepted term, such as tap delay line, we use data queue.

iterations of the loop are currently in execution and generates the
appropriate control signal (mainly for data fetching and storing) ™" _ ——
corresponding to the prologue and epilogue of the pipeline. The : \

address generation unit is a programmable array address generation

unit the compiler can synthesize to automatically increment/
decrement the address of references corresponding to array imdi+i
references in the source program. This unit is controlled by a 1/0
gueue controller to steer the input/output data into the appropriate
core datapath port or if that is the case to the input/output data

queue (see Figure 3 below). imgfi+2]])
imgfij] img[i j+1] img[ij+2] - : thramld

| |
L5tate _ "
Figure 4. Sobel core datapath with input queues.

edgefi j]

The Sobel computation example illustrates the basic hardware
abstractions and compiler analysis techniques our approach
captures. The computation is expressed using a tight loop nest with
multi-dimensional array variables. This feature, pervasive in digital
image processing kernels, allows us to use existing compiler data
dependence analysis techniques to automatically extract the number

img[i+2] \mg[HZjl]\mg[[g
of input and output data reference streams and analyze the reuse

Figure 2. Naive code datapath implementation for the Sobel patterns of data across loop iterations. The compiler uses the
edge detection computation. memory access pattern of the array references to evaluate several

possible designs by transforming the code using loop interchange
and loop unrolling.

imgli+L] imgli+1j+1] imgli+142]

auswod | chamd | [chamd | We next describe each of the hardware abstractions and then
%f V | I) present the compiler analysis algorithm used to extract their
% e <1 Pipeline | _| parameters for the automatic generation of complete hardware
2 _ Contro DATAPATH CORE designs using our target architecture design.
g Generation | .| Unit
2 Units | [KEREERNEN .
g o Buter| HHH 3. Basic Data Storage and Control Structures
= Controller = HEE
AddressBus [Paralieiseid] .| ParaleliSeral We now describe the control and data storage structures illustrated
— DaaBus in Section 2. In the context of our experiments we have developed
Figure 3. Target design architecture. code that automatically generates these structures in behavioral

) - VHDL synthesizable using commercially available synthesis tools.
This example also makes apparent the advantage of exploiting the

fact .that_cons_ecutive iterations of the inner loop use datz_;l thag.l Address Generation Unit
previous iteration have fetched. For example 4, out of the 8 inputs
values from thémg array required for every iteration can be reuseThis address generation unit (AGU) module, shown in Figure 5 is
from the values used in the previous iteration as every computatiarsed to generatestreamof successive addresses corresponding to
uses the pixel values in a “3-by-3” pixel window. The set ofa 1D or 2D array reference using two independent index variables
addresses generated by each array reference in the source prog(aty., a[j][i+1]), and where the index variables are incremented by a
is very simple to define statically by the compiler - it is a simpleconstant amount for each loop iteration.
affine index access expression. This suggests the use of data input
queues to retain the values of the pixel across iteration. Thifhis AGU implementation uses four kinds basic discrete
strategy significantly reduces the number of memory accesses pggmponents. It uses a RAM module to store the base address of the
iteration. Figure 4 presents the revised version of the datapath costieam and the current value of the index variables corresponding to
for the Sobel computation example using data queues. the latest memory address. For a given memory access the AGU
computes the current memory address by first adding into the value
The auxiliary control structure required to support the execution off the current index a given constant value, typically 1. Next it
this revised datapath do not differ from the control structure used imultiplies the value of the offset by either 0, 1, or 2
the previous datapath. Less number of streams are required afyghrameterizable) to account for the sizes of the data values to be
fewer clock cycles per iteration. Because both our pipeline contrdetched. Finally, the AGU controller will add the current value of
units and address generation and 1/O buffer controller areéne offset with the base address provided by the RAM. This AGU
parameterizable and reprogrammable, the compiler needs tnodule is controlled by a simple FSM that stores back in the RAM
generate very little modifications to fully support the execution ofthe current values for the index values at the end of each cycle for
both designs. utilization in subsequent memory accesses.

DATA_BUS
ADDRESS BUS

READ/WRITE T
3 o% DATAPATH
for(i=lb, i < ub, i++) o length = (ub-1b) —
1 | AGU_ENABLE for(j=Ib; j < ub; j++)
. VO = func(infi,j], infi,j+1],infi.,j+2]);
v1 = func(infi+L1,], in[i+1,j+1],in[i+1,j+2]);
p— M P v2 = func(infi+2,], infi+2,j+1],in[i+2,j+2]);
l Lk STREAM_ID outfi,j] = func(vo,v1,v2);
8Y(1+B) bits.
ez:% 4 CORE
“ o length = (ub-Ib) [
nk 24 [3 24 DATA_REQUEST
1o FSM —
— |
i kegp b
e Proaas
po——— Figure 6. Generic window-based computation using vertical
and horizontal data queues.
ADDRESS READY Yet another consideration is the ratio between the length of the
DATA_READY . . .
cLock horizontal and vertical queues. Longer data queues complicate the

place-and-route phases of the logic synthesis tools due to the need
to route longer sequences of registers further eroding the overall

The AGU external interface includes a set of signals to indicat@€rformance due to longer clock cycles. Our compiler currently
which entry is to be used in the memory access and the direction §€S Window queues when the ratio of the length of the vertical
the access (either read or write). Another set of signals defines S4€ues to the length of the horizontal queues is less than one.
external entity (typically from the host processor) to write specific

values to the RAM entries and therefore program the contents of tt&3 Input/Output Buffer Controller

RAM entries. The concatenation option (also programmable)

allows for faster memory access at the possible expense of memadriie Input/Output Buffer Controller (IBC/OBC) interfaces with the

in the layout of the array variables. Multiple streams for the samenemory interface unit (MIU) unit which in turns handles the
array might coexist in the same AGU by using distinct entries in theagaries of physical memory access signals. Each 1/0 buffer
RAM. In the current implementations we have allocated a singleontroller receives a request for accessing a set of data streams
AGU per memory bank in order to allow concurrent memorycoded in the entries of an AGU. Internally a IBC/OBC is a simple
accesses. Clearly resources can be shared by sharing of AG@dunter that signals an AGU and waits for the data to be delivered
entries by multiplexing in time the utilization of the AGU at the writing it to the appropriate data queue input port. Once all of the
possible expense of performance. data has been fetched or stored the I/O controller signals the end of
a memory cycle to a pipeline controfleto proceed with its
computation.

Figure 5. Address generation unit structural definition.

3.2 Queues and Window Queues

Many window-based digital image processing computations offelrf the implementation sought imposes an interface with more than

the possibility of data reuse by defining a “shifting” window alongone AGUs and therefore with more than one I/OBC the compiler

a given region of the arrays the computation manipulates. Different- generate a simple AND gate combining the done signals of all

implementation variants are possible. For example, in a twc?f the I/OBC it needs to wait for in the current pipeline stage.
dimensional domain it is possible to store the area of interest in a

set of queues. Some of the queues, which we can call horizontdl4 Pipelined Execution Control Unit

queues, store the values required for a given computation as the

window is progressively shifted along the rows of the imagewe use a two counter-based pipelined controller as depicted in .
whereas another set of queues can be used to store the values of @€ counter keeps track of the iterations executed while the other
lines of the image saving them for when the computation require@lf the latency of the pipeline stages. A simple FSM controls the
the data of subsequent rows - that is the computation shifts by ro/gkecution of the prologue, the steady state and the epilogue of the
rather than by columns. Figure 6 illustrates the arrangement ¢80P executio The FSM description and the decoder

“horizontal” and “vertical” queues, called herevmdow queudor ~ combinatorial circuits are specified by the compiler when
the Sobel computation. generating the control and depend on the number of stages selected

There is clearly a trade-off between the choice of a window queue
and a set of either vertical or either exclusively horizontal queues. ciearly this is not very efficient as there could be memory access pipelined with

i i i i i other computation of even staggered in order to exploit specific features of the
In the first option the whole design has a single data entry point and memory (e.g., ZBT - Zero Bus Turn-around capabilities of the memory). It is also

therefore a single data stream is required to fetch the successiveconceivable that the pipeline controller interfaces with different 10 controller for
i A accessing different memory banks. In this case the controller must wait for all 1/O

data_ e_I_ements. On the other hgn(_j, multiple queues offer the P ot et arminate.

possibility of parallel I/O from distinct memory banks at the 3 we are assuming, and the compiler will enforce it through software pipelining, that

1 ; i all of the stages of the pipeline have the same latency. It is not the focus of this work
expense of more entries in the corresponding AGUs. o deal with the specifics of software pipelining.

for the evaluation of the core of the datapath and the number @.1 Definitions and Preliminary Analysis
iterations of the loop. As pipelining is not the focus of this work we
have used simple pipelining schemes as described in [17]. Our analysis is geared for perfectly nested loop with multi-
l | dimensional array variables using affine index functions i.e.,
| varffy(iq,....in COIf 21,1k)] [f (i1 inG)], and constant

loop bounds. While not all of the loops of interest are in this form,
I 1 simple variations that include assignment statements between loops
[counter | [counter | can be handled by moving the assignment to the inner loop and
Ltoad | 1 Ttoad predicating its execution to the first iteration of the enclosing loops.

‘ Register ‘ ‘ Register

Start
Done FSM

We also rely on previous work for the analysis and classification of

V loop permutable nests and data dependence analysis information as
distributed in the SUIF system [12]. This preliminary analysis
Decoder determines if a loop is parallelizable and which of the loops in the

m nest are permutable. We use other analysis included in the SUIF
system release that determines which sections of a given array are
read/written and which arrays are part of a reduction operations. We
Figure 7. Pipeline Control Unit (PCU) block diagram. focus on loop with no true Iqop-carried dependences. Other
researchers have addresses the issue of datapath core generation for
loops with true dependences (e.g., [16]).

Controlled Datapath

3.5 Buffered Channel Units and Synchronization

These channels are routinely used for high-speed inter-boar#2 Input Data Reuse
communication. Because of the difficulty to ensure appropriate . .
timing coherency they are typically controlled using some form Of'l'he basic idea of data reuse steams from the fact that multiple

signal handshaking. Figure 8 below illustrates the control for 4€T€rences to the same array may access the same data items at
generic unidirectional data channel. different, or even the same, iterations of a loop. Rather than

fetching the same data again from memory in most cases it would

be beneficial to store the data in registers for subsequent use.
@ We use the definition of self-temporal reuse and group-temporal
n n = o n DATA X) N X X |
52 reuse from [15]. Given a referenédHi+c] iterationsi, andi,
= reference the same data itemHiif;+c = Hi,+c, that is, when the
vectord = (i1-i,) is in the null-space dfl. We say that there is data
WRITE reuse for array along the vector iff Hd = 0 and the vectod is in

READ

the iteration space of the loop. If, however, the loop nest has
: multiple references to the same arfait is possible that different
Lo o . iterations also reference the same data for distinct references. As
RESET before two reference&[Hi,+c4] andA[Hi,+c,] denote the same
data iﬁHil"'Cl = Hi2+C2.

READY

Figure 8. Unidirectional Asynchronous Buffered

Channel. Unlike [15] our analysis requires that all of the references for a
particular arrayA inside the loop have the same access meitfix
4., Compiler Ana|y3is and Algorithms Since our analysis generate input and output queues to store the

various accesses to the array variables it has to be very precise
We now describe the basic analysis techniques and the algorithatpout exactly which references are inserted at run-time into the data
our compiler uses to map computation performed in tight loop nesgueues and which are not. Items already in a queue cannot be
to hardware in VHDL. For space consideration we focus only orieplaced (as in a cache) and so array accesses with distinct access
the automatic derivation of data queues. matrices could complicate the analysis. On the other hand, and
from a practical stand point, not that many computations of interest
Using the analysis results derived from the complier algorithmuse multiple references with distinct access matrices. Even if loop
described in this section it is possible to generate code in multiplenrolling transformation is applied to a single array reference in a
output formats depending of the capabilities of the intend targdbop by construction it is guaranteed that all of the resulting
system. If for example the compiler wishes to target othereferences will have the same access métrix
behavioral synthesis compiler where for example queues are
expressed in a particular paradigm the compiler can generate a
representation suitable for that compiler. If, on the other hand the
target systems does not provided a source level representation fos @he case of different access matrices offers very little chance for data reuse. If the
given abstraction, our compiler can generate VHDL source code SomPIer 2hplies 009 permutalion reuse can occut i one of tne dmension aong

that explicitly represents the intended abstraction. inside the queue are in increasingly strides making it difficult to generate a datapath
that is not a fully connected set of registers.

4.3 Quantifying Reuse and Memory Accesses

We define data reuse along a loop nest diredi@s the number of
array references per iteration of the loop aldwghose data values

dependence analysis techniques to identify data references in the
loop body that have constant distance data dependence vectors [15].
The algorithm, depicted in Figure 10, scans the data references of
the loop body one array variable at a time, and computes for each

can be reuse by using the values stored in data queues. A data qupsi of references for the same variable the corresponding the

of length n from which the computation extracta values per

distance vector. It discards non-constant vectors as well as distance

iteration has a data reuse a@f/(). High number of data reuse vectors that are not elementary (i.e., multiple of any of the axis).
metrics indicate fewer accesses per iteration. Loop invariant data The algorithm arranges the data references in a matrix and uses the

sizek are stored in registers and contribkitanits for this metric.

DependenceTestinction in the SUIF distribution to compute the
actual distance vectors between each pair of references.

Conversely we defined required memory bandwidth per iteration of
the loop along the directiod, as the number of memory access The constraint of elementary reuse vectors is not a fundamental
required to fetch the data into the data queues and other inpuithitation, but rather an implementation and code generation

output registers. Values that are loop invariant need only to beonvenience.

loaded once and are ignored in this metric.

While some computations such as stencil
computations do exhibit “diagonal” reuse vectors code generation
for exploiting the reuse is complex unless the compiler can apply

Because digital signal processing applications typically manipulatg, skewing transformations to the source code.
data items of smaller bit width, the reuse direction d also exposes

the opportunities for multiple data items fetched per memory
access. For example, if a image pixel is encoded in 8 bits a single 32
bits memory fetch can retrieve 4 consecutive image pixels. For
example, if a image pixel is encoded in 8 bits a single 32 bits
memory fetch can retrieve 4 consecutive image pixels. To include
this performance boost in our memory bandwidth metric we further

{vector_list,matrix} identify_reuse_vectors(loop loop_body,
vector DependenceTest(), array_var var){
vector_list = new list;
dependence_matrix = new matrix;
for all data references drl of var in loop_body do
for all data references dr2 of var in loop_body do
vec =DependenceTgsirl,dr2);
if(vec is elementar_vector()) {
vector_list += {vec};
dependence_matrix(drl,dr2) += {vec};

refine the notion of memory bandwidth to include this packing

factor. The memory bandwidth metric evaluation functions is

shown in Figure 9.

double eval_bandwidth_metric(loop_nest loop_body,
vector reuse_dir, vector layout_dir){
double metric = 0.0;
for all data queues q do
b = base_ref(q);
access = (b.access_matrix . reuse_dir);
if(access . layout_dir = 0)
metric += 1.0;
else
if((b.data_size * b.access_stride) > mem_word_width){
metric += 1.0;
else
metric += ((b.data_size*b.access_stride))/(mem_word_width);
return metric;

Figure 9. Memory access per iteration evaluation function.

This algorithm uses the base reference for each data queue (see next
Section) the array data element size and the stride of the accesses
through the array references mapped to each data queue. Our
compiler extracts all these basic quantities from the source program

and through the data dependence analysis as explained next.

4.4 A Simple Data Reuse Algorithm

end
end
return {vector_list,dependence_matrix};

Figure 10. Extracting data reuse vectors algorithm.

4.4.2 ldentifying Data Queues

Given the data dependence distance vectors in the dependence
matrix the algorithm next computes for a given array variable and
for a given direction vector the independence set of maximally
connected references.

{queue_list} identify_data_queues(matrix dep_matrix,
array_var var, vector reuse_direction){
queue_list = new list;
for all data references pair (dr1,dr2) in dep_matrix do
if(drl unmarked and dr2 unmarked)
dg = new queue; queue_list += {dq};
dq +={dr1, dr2}; mark dr1; mark dr2;
if(drl marked and dr2 unmarked)
dq = data_queue(drl); dg += {dr2}; mark dr2;
if(drl unmarked and dr2 marked)
dq = data_queue(dr2); dq += {dr1}; mark dr1;
else
merge_data_queues(data_queue(drl),data_queue(dr2));
end
return queue_list;

Figure 11. Algorithm for identifying data queues.

We structure the presentation of our data reuse analysis algorithfiyo referencesir, anddr, are connected along the elementary
into several sections. First we describe how the algorithm uses d%se directiorﬁ iff there exists a data dependence veeterk g
dependences to extract the set of possible reuse vectors apgatingdr, anddr,. A data queue is defined as the connected set of
directions. Next we describe how the algorithm identifies theeferences that share the same distance vector between references.
possible input and output data queues. At the end of this section Weye pase for each data queue is the reference for which there is no
describe how to explore multiple designs guided by the memongntry (dr) in the data dependence matrix. Figure 11 presents this

access metrics described in the previous section.

4.4.1 Identifying Reuse Vectors

The basic idea of the algorithm is to use input/output data

analysis where we use a simple marking algorithm to determine if a
given reference has been assigned to a particular data queue. Once
identified the base of a data queue the compiler can extract the base
address, offset and stride for that data queue.

4.4.3 Exploring Possible Implementations unrolling. For each loop unrolling it classifies the array references
as loop invariant after unrolling or as potentially exposing reuse
The compiler uses the algorithms described previously to generateafong a subset of the remaining rolled loop dimensions. If a given
set of possible implementations one for each of the identified reusgference is loop invariant there will be reuse carried along any of
vectors. The compiler first extracts the set of possible reuse vectofse rolled loops. The algorithm next concentrates on the remaining
by inspection of the entries in the data dependence matrices for @4lop variant references. First the algorithm determines the set of
of the array variables. Next the compiler creates the set of possibiojected dimensions as the set of array dimensions whose indices
data queues for each of the direction vectors and evaluates thgiry with the set of unrolled loops. Because of the orthogonality
performance using the data reuse and memory access metrics. Quly a single dimension varies with a single unrolled loop. Next the
compiler currently chooses the version with the lowest aggregat@gorithm determines the rolled loop dimension that is couple with

memory access metric. the same unrolled dimension that projects onto the same array
dimension. This couple dimension will be the loop along which
4.5 Implicit Loop Unrolling Data Reuse Analysis reuse will be carried as successive unrolled data references have

replicas of the reuse loop index variable when unrolling is applied.
Unfortunately not all of the loops have the data references exposé&®r each reference the algorithm collects the set of reuse vectors for
as in the Sobel example in Section 2. In some cases the computati@®ch of the loop unrollings. In the last step the algorithm determines
is expressed in a compact form using a deeply loop nest with fer each of the reuse directions which of the data references exhibit
single reference per array variable rendering innefective théeuse along a given reuse direction. The algorithm also computes
analysis described above. the dimensions and shape of the queue to include the unrolled data

references. Figure 13 illustrates the various algorithm results for a
To address this shortcoming we have developed an analysis theindow-based correlation algorithm and for a particular loop
examines the effects of loop unrolling on the set of generated arraynrolling vector(m,n,i,j) = (0,0,1,).

references and extracts the possible set of data queues for th? . . o .

. . or(m=0; m < M; m++){ for(n=0; n < N; n++){ /I Loops m and n
unrolled data references. Because this analysis does not actualforn=0; n < N; n++){ for(m=0; m < M; m++){ // Interchanged
unrolled every loop it checks in an explicit fashion, but rather = sum=0; sum =0;
examines its implications on the set of generated references, we call f‘;g;gg?o', J<<' J',J'J.?ﬂ " loop body unrolled (1 x J) imes
this an implicit loop unrolling data reuse analysis. The main if(mask{il[i] 1= 0) .
advantage of this implicit unrolling strategy is that our compiler sum += array[m-+ij[n+jJ; . .
does not have to incur in the space, and therefore time, costs of }res[m][n]_sum’ res[miin] = sum;
doing explicit loop unrolling, in particular when the loop bounds }
are large. In addition this implicit unrolling approach provides a 2 ©riginal source code. b. Transformed source code
handle when the loop bounds are unknown and/or when thepr = (dr1 = mask[jj, dr2 = array[m-+i]in+i}}
compiler wishes to do partial unrolling. unroll vector | = [0011];

drl.am = [0010]0],[0001]0];
We now describe the analysis algorithm the compiler uses todrz'am:[1010|O]’[0101|O]’
determine which of the loops should be unrolled and which should listegpiny, = {dri} = {maski[)}

be exchanged to expose the maximal data reuse. We make ther = dr2 = array[m+iJ[n+]]

- S . . i = [0001 i = [001
assumption (and this is often the case in practice) that the array dat&>* - [3?81]] ool :[0[(1)0?]
references inside the loop have the property that every loop index vcoupled = [0100] vcoupled = [1000]
i i i i reuse = [0100] // along loop n reuse = [1000] // along loop m
variable can be present in at most mode one array dimension. We layout = dr2.am [0011] = [+] layout = dr2.am [0011] [+]

call this property index orthogonality and greatly simplifies the
analysis and determination of reuse directions. The outline of the Figure 13. Implicit loop unrolling analysis example.

algorithm is illustrated in Figure 12 below.))
Because the number of possible loop unrollings grows

for each legal unrolling l'in L do exponentially with the depth of the loop nest we have limited the
for every data reference dr in DR do b f | d 1 li b ideri v |
if(dr.amunroll = 0) then number of explored loop unrolling by considering only lega
listoopiny += {dr}; unrollings that lead to one or more of the array variables to become
for every data reference drin {DR - ighin} do loop invariant after unrolling. Clearly future compiler analysis
f‘;r e‘_’i’ér”:;';em entry i of I do implementations should also consider the impact on the resources
ﬁ?\),]pmj I=0and]. g !=0) then by loop unrolling. Given the re_sults of th_e analysis the compiler
I/ vproj by definition is either zero or unit basis vector next evaluates each of the candidate solutions based on the memory
eoupled= V i loop such that dr . am . v 5y access metric described in Section 4.3.
if(VCOUp|ed!: 0) then
reuse alonge¥ypled)
queue layout = mask(dr.am.l); 4.5.1 VHDL Code Generation
}
} Given a loop nest a selected reuse direction and corresponding data
Figure 12. Data reuse algorithm with implicit loop unrolling. gueue implementation, the compiler uses a set of predefined control

)] o structures to generate and program the control structure described
The algorithm explores all possible legal combinations of looR, section 3. To generate the datapath corresponding to the

statements in the loop body our compiler traverses the abstraft2 Applications

syntax trees in SUIF generating an internal datapath representation)

where identical scalar references and data values are mapped>g-1 Sobel Edge Detection - Sobel
registers. The current implementation handles limited set o{.

constructs in C and uses a simple pipelining implementation guide(gjhis application implements the Sobel edge detection algorithm
. . ver 4-by-64 gr le image. Th lication two 2D
by the set ofassignstatements in the loop body. In the current er a 64-by-64 gray scale image © application Uses Wwo

. .) . - aéray, one to store the image and another to store the results of the
implementation we have ignored the issues related to bit widths an . L .
computation. The core of the computation is performed in a doubly

optimizations related to using small than the predefined bit Widt,rﬂwested loop. At each loop iteration the computation uses a 3-by-3

];)or;hococ?r\ll:lntlgr:ﬁg w%lilr(pgzgfr.ibsé(?]lgrr:engnc;hf;a bg‘;tgillzaéfgs O;‘Zvi dow of image pixels to compute vertical and horizontal gradient
thog)) y POSGRiues. Using these two metrics the algorithm decides to assign
with the current implementation.

either a ‘1’ value or a ‘0’ value to the result array pixel.

The current implementation of our compiler generates VHDLg 5 5 String Pattern Matching - Pattern
specifications for the control structures, and data queues. these

structures are instantiated using predefined templates. Eagthis application performs a simple character by character matching
structure is described using a behavioral or in some cases By patterns against substrings in a given string of characters. Th
structurally composing behavioral components using the “porpriginal code is as depicted in Figure 14. It scang#iternarray
map” VHDL language construct. variable repeatedly and compares it against shifted versions of the

,) . . _array str variable. If at least one of the characters differs the
While the current implementation works for a specific vendor log'ccorresponding result of the matching is set to the vafue 0.
synthesis, we have neither relied nor exploited any vendor specific

VHDL style or library implementations. Clearly the data gathered for(i=0; i < STRING_SIZE-16; i++){

res[i] = ‘1’;
by the compiler analysis described here would allow the compiler fgr%']: 0] < 16; j++){
to exploit FPGA library component features by adequately 'fr(gsa[tiie:"w,];!‘ strii+{
choosing among a myriad of possible implementations customized break;
for each of the targets architectures. }}
}
5. Experimental Results Figure 14. String pattern matching computation.

) .) 5.2.3 Automatic Target Recognition - ATR
We now present experimental results for the compiler analysis and

semi-automated compiler generated designs. We are currentphis application performs matchings between a given template and
unable to fully automatically generate complete designs using & sgindows of an gray scale image. The basic computation consists of
of library functions we have developed. Instead we use thginary image correlations between the template matrix and shifted

information provided by the compiler to a file to feed a codewindows over the input image as illustrated in Figure 15.
generation program manually and merging several VHDL files for

) ; : for(m=0; m < IMAGE_SIZE-MASK_SIZE; m++)

the complete implementation of a design. for(n = 0: n < IMAGE. SIZE-MASK_ SIZE: n++){
sum =0;
for(i=0; i < MASK_SIZE; i++)

5.1 Methodology for(j=0; j < MASK_SIZE; j++)

o)) if(mask(i][j] '= 0)
We used a set of complete applications written in C for the sum += image[m-+i][n+];
evaluation of the compiler analysis and compiler generated designs. ;es[m][”] =sum;

The applications are compiled using SUIF v1.4c2 distribution

tool. We then used the compiler algorithms described in Section 4 Figure 15. Shifted window binary correlation computation.
(approx. 8,000 lines of C++) to analyze and select a particular

implementation for the loop nests of interest in each applicatior®-3 Results

We then used the results of the compiler analysis to generate VHD e now describe the performance results of our code generation
files using a set of predefined template generation function W : p u u 9 :

(approx. 10,000 lines of C code). We then merged the VHDL filegtrategy and quantify the simulated performance of the resulting

by hand and used the Xilinx Foundation Series V2.1i IogiCgenerated designs. We begin this discussion by presenting the

synthesis tools to generate logic design data and bitstream files. compilation and synthesis metrics.

able 1 presents the compilation and synthesis results. For each of
the tested applications we report the number of source code lines
]‘ﬁr both C and the VHDL generated codes (excluded comments and

We report results for the logic synthesis running on a Pentium Il P
running at 450 MHz and with 128 Mbytes of memory for the
generation and evaluation of the compiler generated designs.
our synthesis experiments we used the Virtex 1000BG560 FPGA
series and used a low effort and optimized for speed place-and-
route (P&R) settings. The timing results we report are extracted we have also implemented an analysis capable of recognizing the presence of

from the generated log files with timing analysis with complete “break” and “continue” statements in typical search and matching computations.
0 This analysis coupled with the data reuse analysis allows a compiler to eliminate the
(100%) path coverage.

break statement in this loop without changing the semantics of the computation.

blank lines). We report the number of loop nests in each applicatioreveal the compiler is able to identify the opportunities for data
and the number of loops the compiler selected for hardwareeuse and generate the data required to automatically generate a
execution. For the generated VHDL source code we report on itsomplete VHDL design. Because of their relative small size, the
size, the number of distinct components and instances used. Finatignerated designs f&obelandPatternare synthesized and routed

we report on the compilation analysis and synthesis speed. fairly quickly. The design corresponding to the ATR application
uses 55% of a single FPGA resource and takes much longer to
Source Code Metrics VHDL Code Metrics Analysis & Synthesis Time Synthesize (even W|th hierarchical P&R) We attribute th|S
aop | GRdC | KRR | HAR | GRS | Jomms | AR | ATWESS | Fme | Smess discrepancy to the PC memory trashing effects.
Sobel 80 3 1 2,340 39 134 <1 sec| <1sgc 10 mi
Patten | 98 2 T | 2445 =2 111 <Isec| <Lséc 8mn Application D;:rpeath G'gﬁ;‘\']gfeség" Fylﬂﬁéh NLuLTTbser ?;::s Ei‘;g:ﬁfﬁg \nrt::::oo
ATR 300 5 3 4,400 38 386 <lsec| <1sec 780min. Clock (MHz)[Clock (MHz) Cycles
. . . Sobel 56.5 26.5 840 727 11,375 2,196,480 5%
Table 1: Compilation and synthesis results. e =5 5 5 S BT B =
ATR 52.5 25.7 9,163 9,649 145,75 182,27 55%

Table 2 presents the results of the compiler analysis. For eact - ; -
application we report on the number an length of the data queues 1able 3: Simulated target designs performance metrics.
the algorithm has identified and the unrolling vector that has th

lowest memory access metric. ?’he performance results (simulated clock rates) also reveal that the

limiting factor is the control datapath as the core datapath are

popicaion | UTOled Rouse | poaoueues| 00 | paareusd Mem capable of much higher clock rates. Several factor contribute to
Loops Vector Data Queue Band this. First the generality of the modules used. As an example our
Sobel - &y = 0.1 3 3 ° 0 memory access subunit is fairly generic as it can handle both
Pattern {i} @H=(@) 2 16 31 0.5 . . .
- o= oD 5 T BT YT SRAM as DRAM modules. This clearly introduces latency in terms

- of clock cycles. Our interfaces allow for the presence of multiple
Table 2: Data reuse analysis results. memory interface module for distinct memory banks with a

For theSobelapplication the compiler recognizes the o ortunitiesCommon pipelining control unit. Several other design aspects have
pp P 9 pp not been explored in this paper as our focus was the design of a

.Of two reuse directions. Secause th_e cur_rent Compllercompiler analysis algorithm to allow the automatic generation of
implementation chooses the implementation with the lowes

. ardware implementations. We have not explored the trade-offs in
memory bandwidth we therefore report only on the performanc

) . the design of the pipelining control unit and the possible

izglti.ogéhti;teliﬁt;?nvelr;'p ns Ef ShObfol];.S Zﬁi%ﬁ a;‘?‘;ﬁ: refinements of pipelined memory access unit. As such our

gniz Lunrofiing fogps nign profi At varl simulation performance results can be improved by using control
becomes loop invariant. The resulting implementation should have .. = .

; 4 nits with more advanced features.

a single queue of length 16 for thie variable and another queue of
the same length for thgat variable. Finally théTRapplication has
3 loops in which there is a substantial amount of reuse. We prese@l- Related Work

only the rgsults for the loop |IIl.Jstrated.|n Flgure ;5' For this IOOIDSeveral research efforts have concentrated on the development of
the analysis selects the unrolling of loopndj, which reveals a

maximum reuse for a 32-by-32 queue for kvariable which new reconfigurable architectures. The RaPiD [6] architecture is a

. coarse-grained field-programmable architecture composed by
'S :ootp lrlv?n?rr:t gmd_ a 32-by-32 dquel:eﬂf]orfnllllmg vali_lable% th multiple functional units such as ALUs, multipliers, registers and
niortunately the design corresponaing to the Tufl unroing of theg pny p1ocks. These units are organized linearly over a bus and

two inner loops is too large to fit on a single FPGA. Instead we . . . o .
. . communicate through registers in a pipeline style. As with other
partially unroll each of the two inner loop by a factor of 16, g 9 PIp y

. . orts the authors have develop a specific extension to the C
:Zzngfg::fﬁuzg rllglctglntllG ?:;?egzggetSHeTzlsni?or;Ss:rsshlei?ts FaF; gbgramming language that exposes some of the architecture to the

SS9 y Increas piexity rogramming model hence simplifying the compilation process.
therefore the simulated execution time.

Table 3 shows the simulated performance results for the generatA CMU researchers developed the PipeRench [10] architecture

. . . ared solely to pipelined computations with virtually unlimited
designs. It includes the overall simulated clock speed, the numbér : .

; ! umber of stages. Programmers rely on compilers to map their
of flip-flops and latches used as well as the number of LUTs an g 9 y P P

. . epplications, written in C, to partition their computation to the
equivalent gates counts. For raw performance comparison w; ional bilit f h . h i h
included the number of execution cycles required to complete th%omputatlona capabilities ol eac .strlp. T € comprer then

. ; L . enerates a schedule of the virtual strips and relies on hardware to
entire loop nest computation of each application. Finally we repo

on the area of the Virtex1000 reported used by the P&R tool. wap in and out the configuration for each of the strips on demand.

. . The MIT RAW [3] is a coarse-grained mesh architecture where

;Te;aﬂfni].g\g”s th:e:hrgs %eesslgr;]ss toRa;::a;lr: r;SeZeeCtzt::' crI](;ck gteegch of the computing core has a simple controller, a set of

u cally denv Igns. . Igns w Fegisters, a local RAM block and programmable communication
generated automatically by manually using the results of th

. .) . . ®hannels. The compiler partitions the computation and data amon
analysis with the library of code generation functions we hav prer p P g

.) - g . he cores and programs the communication channels to best suite
implemented using generic, and simple, parameterized modul

) e communication pattern for each application.
(e.g, adders, sub, comparators, multiplexors, etc.). These results P PP

At Berkeley researchers integrated a MIPS core with reconfigurabBibliography

hardware to be used as an accelerator in a co-processor integratjon
model [19]. The reconfigurable hardware consists of a set of 2
arrays of CLBs interconnected by programmable wiring. Each oRl
the array has a section dedicated to memory interfacing and control
and uses a fixed clock. The reconfigurable array has direct accesg4p
memory for fetching either data or configuration data hence
avoiding both data and reconfiguration bottlenecks.

These efforts differ from our research in two main aspects. First an[é]
as new architectures, these efforts have chosen which components
of the systems are reconfigurable and what are the mactd
instructions the non-reconfigurable portion can execute. In our case
we are given a set of FPGAs and an external interface and have[6b
synthesize from the ground up all of the control structures in the
FPGA to allow them to operate autonomously. Because these
approaches do not use commercial synthesis tools they avoid tkvé
performance and interface issues with place-and-route.

Like our effort other researchers have focused on using automatjg
data dependence and compiler analysis to aid the mapping of
computations to FPGA-based machines. Weinhardt [17] describe
set of program transformations for the pipelined execution of loops
with loop-carried dependences onto custom machines using [£0]
pipeline control unit and an approach similar to ours. He also
recognizes the benefit of data reuse but does not present a compiler
algorithm. No references in the literature mention multi-[11]
dimensional arrays as well as the implementation of a decision
procedure to analyze the various trade-off choices for they
implementation of data queues. We further use loop unrolling to
expose more array references in the program and therefore infé?!
data reuse for the unrolled loops.

The Napa-C compiler effort [7,8] explores the problem of[14]
automatic mapping array variables to memory banks. This work in
orthogonal to ours. We are interested in implementing an efficierjis;
and autonomous computing engine on each FPGA of a multi-FPGA
board. Their RISC-based interface as expected is very similar to OH%]
target design architecture as a way to control the complexity of the
interface between the FPGAs and the host processor. A majgr7]
difference is the fact that we target commercially available
components and not an embedded custom architecture. [18]

7.0 Conclusions

We described a compilation and synthesis scheme for the automatic
mapping of loop nests that access multi-dimensional arrays to
hardware implementations. We have implemented a compiler
analysis algorithm capable of automatically generating efficient
implementations for these loop nests. This algorithm exploits the
data reuse and array memory layout to minimize the number of
required memory accesses. The simulation experiments, although
limited, suggest the code generation approach combined with our
compiler analysis can be used as a basis of a successful compilation
and synthesis approach for digital image processing computation
onto FPGA-based computing engines.

Annapolis Micro Systems Inc., “WildStaY Reconfigurable Computing
Engines. User's Manual R3.3”, 1999.

J. Arnold, “The Splash 2 Software Environment”, In Proc. IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM ‘93), IEEE Computer Society
Press, Los Alamitos, 1993, pp.88-93.

J. Babb, M. Rinard, A. Moritz, W. Lee, M. Frank, R. Barua and S.
Amarasinghe.”Parallelizing Applications into Silicon”, In Proc. IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM ‘99), IEEE Computer Society
Press, Los Alamitos, 1999, pp. 70-81.

P. Bellows and B. Hutchings,“JHDL - An HDL for Reconfigurable Systems”, In
Proc. IEEE Symp. on FPGAs for Custom Computing Machines (FCCM'98),
IEEE Computer Society Press, Los Alamitos, 1998, pp. 175-185.

M. Chu, N. Weaver and K. Sulimma, “Object-Oriented Circuit Generation in
JAVA", In Proc. IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM'98), IEEE Computer Society Press, Los Alamitos, 1998, pp. 158-165.
D. Cronquist, P. Franklin, S. Berg and C. Ebeling, “Specifying and Compiling
Applications for RaPiD”, In Proc. IEEE Symp. on FPGAs for Custom
Computing Machines (FCCM'98), IEEE Computer Society Press, Los
Alamitos, 1998, pp. 116-125.

M. Gokhale and J. Stone, “Automatic Allocation of Arrays to Memories in
FPGA Processors with Multiple Memory Banks”, In Proc. IEEE Symp. on
FPGAs for Custom Computing Machines (FCCM'99), IEEE Computer Society
Press, Los Alamitos, 1999, pp. 63-69.

M. Gokhale and J. Stone, “Napa C: Compiling for a Hybrid RISC/FPGA
Architecture”,In Proc. IEEE Symp. on FPGAs for Custom Computing Machines
(FCCM'98), IEEE Computer Society Press, Los Alamitos, 1998, pp. 126-135.
M. Gokhale and B. Schott, “Data Parallel C on a Reconfigurable Logic Array”,
Journal of Supercomputing, 9(3):291-313, 1994.

S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi, R. Taylor and R.
Laufer, “PipeRench: A Coprocessor for Streaming Multimedia Acceleration”, In
Proc. of 26th Intl. Symp. on Computer Architecture (ISCA'99), ACM Press,
New York, 1999.

J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a Reconfigurable
Coprocessor”, In Proc. IEEE Symp.on FPGAs for Custom Computing Machines
(FCCM'97), IEEE Computer Society Press, Los Alamitos, 1997, pp.12-21

“The Stanford SUIF Compilation System”. Public Domain Software and
Documentation available at http://suif.stanford.edu.

J. Villasenor, B. Shoner, K. Chia and C. Zapata, “Configurable Computing
Solution for Automatic Target Recongition”, In Proc. IEEE Symp. on FPGAs for
Custom Computing Machines (FCCM ‘96), IEEE Computer Society Press, Los
Alamitos, 1996, pp. 70-79.

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal. “Baring it
all to Software: RAW Machines”, IEEE Computer, Sept. 1997, pp. 86-93.

M. Wolf and M. Lam, “A Loop Transformation Theory and an Algorithm for
Maximizing Parallelism”, IEEE Trans. on Parallel and Distributed Systems,
Oct., 1991.

M. Wolfe, High-Performance Compilers for Parallel Computingddison-
Wesley, 1996.

M. Weinhardt and W. Luk., “Pipelined Vectorization for Reconfigurable
Systems”, In Proc. IEEE Symp. of FPGAs for Custom Computing Machines
(FCCM'99), IEEE Computer Society Press, Los Alamitos, 1999, pp. 52-62.

M. Weinhardt and W. Luk, "Memory Access Optimization and RAM Inference
for Pipeline Vectorization”, In Proc. of the 9th Intl. Workshop on Field
Programmable Logic and Applications (FPL'99), Springer Verlag LNCS Vol.
1673, 1999, pp.61-70.

